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Time Asymptotics for Solutions of Vlasov-Poisson
Equation in a Circle
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We prove that there exists a class of solutions of the nonlinear Vlasov-Poisson
equation (VPE) on a circle that converges weakly, as t-»oo, to a stationary
homogeneous solution of VPE. This behavior is called, in the linear case,
Landau damping. The result is obtained by constructing a suitable scattering
problem for the solutions of the Vlasov-Poisson problem. A consequence of this
result is that a class of stationary solutions of the Vlasov-Poisson equation is
unstable in a weak topology.

KEY WORDS: Vlasov-Poisson equations; scattering theory; asymptotic
behavior of solutions.

1. INTRODUCTION

It is well known(15,28) that the motion of a plasma of electrons in a uniform
background of ions can be described, in the collisionless case, by the 1D
Vlasov-Poisson equations

In ( 1 . 1 ) f ( x , v, t) represents the density of electrons at location x, traveling
with velocity v at time t, p is the space density and p0 is the density of ions
(assumed constant) added to make the system neutral. Notice that by
E(x, t) we mean the force field, which is minus the electric field.
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Let us recall(20) that a simple steady solution of (1.1) is provided by
the pair

In a classical paper of 1946(14,15) Landau considered the linear Vlasov-
Poisson equation (i.e., the Vlasov-Poisson equation linearized around a
stationary homogeneous solution) and showed that the perturbation is
asymptotically damped, and the electrical field vanishes, as t-> oo.

This linear phenomenon by which a perturbed plasma relaxes toward
a homogeneous equilibrium is usually called Landau damping. A complete
description of Landau damping in the analytic framework is presented in
ref. 18.

In this paper we show that there exists a suitable class of solutions
of the full problem (1.1) on a circle, which relaxes, asymptotically, to a
homogeneous equilibrium state. This is, as far as we know, the first
rigorous proof of damping on a bounded set, namely not due to dispersive
effects.

However, our analysis is far from complete: indeed, we are not able to
characterize fully the class of initial data exhibiting such behavior.

The idea of the proof is, roughly, the following.
If f becomes homogeneous, and therefore the electrical field vanishes,

then, for large t, we expect that / behaves as the free evolute of some
suitable phase space density f*:

Thus, instead of solving VPE with an initial datum and trying to under-
stand whether or not the solution becomes homogeneous, we give an
asymptotic datum /* and try to solve VPE with the condition

In particular, as we shall see, we try to construct a solution by perturbing
around f*(x — vt, v).

This program may be performed if f* is sufficiently smooth. In par-
ticular we shall require sufficient conditions on f* to assure an exponential
decay of the electrical field as t-> oo.

Once a solution of the Vlasov-Poisson equation satisfying (1.3) is
found, it is easy to prove also the homogeneous nature of the result. In fact
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(1.3) says that f behaves asymptotically as the free evolution of f* and the
free evolute of the density become homogeneous, i.e.,

where h(v) = ( 1 / 2 n ) f S 1 f * ( x , v ) d x is the spatial mean of f*. Here the
convergence is in the sense of the weak convergence of the measures.

This kind of construction is typical in scattering theory (see, for example,
ref. 23), that is, we construct a solution of the Vlasov-Poisson equation
that has a given asymptotic behavior. In this language the solution of the
full asymptotic problem would be to prove the asymptotic completeness.

In Section 2 we state the problem and give some general definitions.
In particular we define the Vlasov-Poisson equation on a circle with an
asymptotic condition.

We prove that the free motion is homogeneous: this is a well-known
result; see for instance, ref. 8.

In Section 3 we prove the main result of this paper. Given /* suf-
ficiently smooth, we construct, by iteration, a solution of VPE that satisfies
the asymptotic behavior (1.3). The main tool to prove this result is a con-
traction argument (Lemma 3.1 below) that we use to construct a sequence
of linear evolution problems converging to a solution of the VPE.

Finally, in Section 4, we prove the instability, in the weak topology,
for a class of stationary solutions of VPE. This class is explicitly charac-
terized. In particular it is possible to prove that a Maxwellian exp(— av2),
is unstable if a is sufficiently large.

We conclude this introduction with some general remarks.
The existence problem and the qualitative properties of the VPE have

been extensively investigated. Here we quote some references (without
claiming to be complete) and address the reader to ref. 3 for an excellent
and extensive review. Existence of smooth solutions of the Vlasov-Poisson
equation in dimension 1 was obtained by Iordanskii(13), and in dimension
2 by Ukai and Okabe(26), In dimension 3 global existence was obtained by
Pfaffelmoser(21) and then his result was simplified by Shaeffer(24). In dimen-
sion 1 the existence of measures-valued solutions was obtained by Zheng
and Majda,(28) while Majda et al.(16) showed nonuniqueness of solutions of
the Vlasov-Poisson equation for singular initial data. Time decay of the
solutions of the Vlasov-Poisson equation on the whole space has been
characterized by Glassey and Shaeffer(7) (in the linearized case), liner and
Rein,(12) and Perthame.(22)

Dispersive arguments were used by Bardos and Degond(12) to prove
that solutions of the 3D Vlasov-Poisson equations (in all R3), with small
initial data, asymptotically decay. Scattering theory has also been used to
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investigate the long-time behavior of solutions of nonlinear wave equations
(nonlinear Schrodinger equation, Klein-Gordon equation).(10,11,25)

The problem we study here differs from those in the above references
because we work in a compact configuration space (the circle).

It is well known that there is an analogy between the 1D Vlasov-
Poisson equation and the 2D Euler equation expressed in terms of vor-
ticity. The result in this paper suggests that, following the same approach,
one could try to study the homogenization problem for the Euler equation
solutions. This question was considered in ref. 5, where the asymptotic
behavior of a particular vortex patch was studied. More precisely, in ref. 5
it was shown that homogenization is realized for the simplified model of
the characteristic function of a set D = Cu A, where C is a circular domain
and A is an annulus with regular boundary, which evolves passively (that
is, A evolves only under the action of the velocity vector field due to C).

Finally, a statistical mechanics approach to the study of the long-time
behavior of the Vlasov-Poisson equation was proposed in ref. 19.

2. GENERAL FACTS AND NOTATIONS

On the phase space Q = SlxR we consider the following norm: if
z = (x, v), then |z| = |x — x'|s1 + \v — v'|, where |x — x'|s1 is the distance on
the circle:

In the following, when no confusion can occur, we omit the index Sl for
notational simplicity.

In the following we shall often use the notation

Sometimes it is convenient to think of B as extended periodically in the
whole line. In this case note that B is discontinuous at 2kn, keZ.
Moreover,

where B(x) solves dxB = d(x)— 1 / ( 2 n ) on Sl and therefore



Note that solutions of problem (2.7)-(2.9) are weak solutions of the
problem (2.5). We look for solutions of (2.7)-(2.9) which also satisfy

and

where

which satisfy the asymptotic condition

for a given /* in a suitable class to be defined later.
More precisely we shall consider the following problem.

Definition 2.1. We say that the triple ( P t , E , f ) is a solution of
the VPE if for any (x, v)eQ and t>t 0 , 4>t(x, v) = (X(x, v, t), V ( x , v , t ) )
satisfies

In this paper we look for solutions of the VPE on a circle,

and if the interval [x, y] does not contain 2kn for any keZ, then
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condition (2.6) and this will follow automatically under suitable smooth-
ness conditions.

Definition 2.2. (Homogenization). A solution f ( x , v, t) of the
VPE becomes homogeneous if there exists a function h e L 1 ( v ) such that

where the limit is understood in the sense of the weak convergence of the
measures.

It is easy to prove that the free motion homogenizes.

Theorem 2.1. If / solves dtf + vdxf = 0, f(x,v,0)=f0(x,v),
wheref0eL1nL^, i.e.,

then there exists the weak limit

where

is the spatial average of f0.

Proof. Given a test function <j>(z), z — (x, v), (j>eC°, with a compact
support, let us consider <0(z), f ( z , t)>, the scalar product in L2 of (j>
and f. We have

Let us call g(a, b) the Fourier transform of g(x, v) with respect to x and v,
i.e.,

We can notice that f(x + vt, v)(a, b) = <j>(a, b + at).



In the following we prove that, if f* belongs to a suitable set, the problem
(3.1)-(3.2), with the condition (3.3), can be solved for all n. Moreover,
fn(x, v, t) converges, as n -» oo, to a solution f(x, v, t) of the problem
(2.5)-(2.6).

Let us notice that for n = 0 the evolution is just the free one:

and, for n > 0,

where

to be solved with the asymptotic condition

where (j> is the complex conjugate of <j>. The first term in the sum exactly
gives ( 1 / 2 n ) fa<t>(x> v ) h ( v ) d x dv. If one applies to the second term in the
sum the Lebesgue dominated convergence theorem, the result follows.

3. THE MAIN RESULT

The procedure we follow to study the problem (2.5)-(2.6) (in the sense
of Definition 2.1) is iterative.

More precisely, given f*, let us define, for (x, v, t)eQx [t0, oo) and
n = 0, 1,..., the sequence of linear problems

Solutions of Vlasov-Poisson Equation on a Circle

From the Parceval equality it follows that
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We anticipate that the main ingredient of the proof is the contractivity
of the operator J* (see the definition below) that applied to En gives En + l

in a suitable norm (see Definition 3.2). The contractivity properties of this
operator are proved in Lemma 3.1, while the main result, which is a simple
consequence of this lemma, is given in Theorem 3.2.

Definition 3.1. Given the positive constants a, a1, a2, we say that
f*eS a , a 1 , a 2 , if f*>0, and( i )

where

is the Fourier transform of f* with respect to space and velocity, and (ii)

Definition 3.2. Given F(x,t), let us define ||F||a , =sup t> t0 e
at

||F(;t)||L^(S1)

Lemma 3.1. Let/*e5a,a1,a2, where a > 1 5 / a 2 . Let t0>0 and
F(x,t)eC(S1x[t0 , oo)) a given field, such that (i) | | F | | a , t 0 e - a t 0 < a , and
(ii) for any t > t0, there exists LF<24a2 such that

Then:

1. For any (x, v) e Q, t > t0, there exists a unique solution

of
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2. Defining / by

it turns out that / is a weak solution of

with the condition

3. Defining &(F) by

then

Moreover, as F = 0, .F(0) satisfies

The proof of this lemma is given in the Appendix.

Remark. Let us note that the trajectories in (3.4) are labeled with
their asymptotic behavior instead of, as usual, with their initial condition.

Theorem 3.2. Assume that f* eSa,a1,a2, where a > 15 /a2, and let
t 0>max(0, (1/a) log 8a1a2). Then, as t > t0, there exists a triple ( < P , 1 , E , f )
which satisfies (2.7)-(2.9). Moreover, / is a weak solution of VPE (2.5)
which satisfies the asymptotic condition (2.6) and

Proof. The proof, by induction, is a direct application of Lemma 3.1.
Let us consider the problem (3.1)-(3.3). We shall prove that, as

n=1,2,. . . ,



which implies that En + 1 satisfies (3.10). Moreover, (3.6) implies that En + l

satisfies (3.11), and (3.12) is a consequence of (3.7).
Finally, by (3.12) the sequence En is convergent to a Lipschitz function

E which satisfies (3.10), (3.11). Then by Lemma 3.1 we get the existence of
the solution.

Remark. The solution can be extended at time t < t0 by applying
an existence theorem for the Vlasov-Poisson equation; see, for example,
ref. 13.

The initial datum is not explicitly characterized, but we can construct
it iteratively; in fact, f ( x , v, t) is the limit of fn(x, v, t) and fn converges to
f in an exponential way.

Corollary 3.3. The solution f ( x , v, t) constructed in Theorem 3.2
becomes homogeneous.

Therefore E1, satisfies (3.10) and (3.11).

Step n=> n + 1. If En satisfies (3.10), (3.11), then En satisfies the
hypothesis of Lemma 3.1. Therefore, by (3.5), as En+1 = &(En), we get

while by (3.6) it holds that

by (3.8)

Step n = 1. By (3.1)-(3.3) and the definition of & we have
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Proof. In fact, for any q> e C0(Q) we have

The first term vanishes as t-> oo because | | f ( x , v, t) — f*(x — vt, v ) | | L > ( X , V )

-»0 and the second, because of Theorem 2.1, converges to J cph, where
h ( v ) = ( 1 / 2 i t ) f s l d x f * ( x , v ) .

The solution we have found is not classical because /* is only Holder
continuous as a function of x. By requiring additional hypotheses on f*, it
is possible to obtain a classical solution.

Theorem 3.4 (Regularity). Assume that f* satisfies the hypothesis
of Theorem 3.2. Furthermore assume that f* e C1(£2), and that

where c is a positive constant. Then the solution f ( x , v, t) constructed in
Theorem 3.2 is a classical (C1) solution of (2.5)-(2.6). This theorem is
proved in the Appendix.

4. INSTABILITY FOR A CLASS OF STATIONARY SOLUTIONS
OF THE VPE AND SOME COMMENTS

It is well known (see, for example, refs. 4, 9, 17) that a stationary solu-
tion h(v) of VPE is stable in L1 if h(v) has a finite kinetic energy, is a non-
increasing function as v > 0, and is a nondecreasing function as i; < 0. In
particular the Maxwellian h(v) = e-aV2 (a>0) is a stationary stable solu-
tion of the VPE in the L: norm.

We note here that, for a certain class of these solutions, we have
proved an instability result in a weak topology.

More precisely, we proved that if F(x, v) belongs to the functional
space Sa,a1,a2 (for a>15 ^/a2), then there exists a solution f(x, v, t) of the
VPE such that \ \ f (x,v, t ) - f * ( x - v t , v ) \ \ L x ( X , V ) > 0 as t->oo. This fact
implies, in particular, that f(x, v, t) converges weakly, as t -» oo, to h(v) =
( 1 / 2 n ) \ s ^ f * ( x , v ) d x .



Since F is Lipschitz and ||F|a,t0 is bounded for any pair (x, v) in Sl x R,
there exists, uniquely, a trajectory <Pt(z, v) = (X(x, v, t), V(x, v, t)) such that

The right-hand side is constant in time and equal to -J f* logf*, and the
equality is realized only if h=f, that is, in the trivial case. Notice in fact
that h(v) is obtained by averaging f*(x, v) with respect to the x variable.

APPENDIX

Proof of  Lemma 3.1.

Step 1. Let us consider the trajectories of the dynamical system
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Moreover, because of the time reversibility of the solutions of the
VPE, we can construct an initial condition as close as we want (in a weak
topology) to h(—v) such that, after a certain time, its distance (in the same
topology) from h( — v) is greater than a certain fixed amount.

In other words, iff*(x, v) belongs to Sa,a1,a2, then h(v) is an unstable
stationary solution of the VPE [notice that if f*(x, v) e Sa , a , a 2 then
f * ( x , - v ) e S a , a 1 , a 2 ] .

In particular, we can prove instability (in the weak topology) for
stable (in the L1 norm) solutions of VPE. In the case of the Maxwellian,
to find that h(v) = e~av2 is unstable, it is sufficient to take f*(x, v) =
e~a v 2(1 + Acos x), with |A |<1 and a>0 large enough, in order to satisfy
the hypotheses of Theorem 3.2.

We conclude with a final remark. Our result proves the existence of
solutions of VPE that converge weakly, as t-» oo, to a steady solution h(v).
As was noticed by Landau, this phenomenon is of a different nature than
relaxation at the equilibrium for collisional gases (i.e., for gases described
by the Boltzmann equations). In particular, VPE are time-reversible
equations, and the entropy — Jf log f is constant along the solutions.
Nevertheless, one can notice that the entropy related to the steady solution
h is larger than the entropy related to / In fact, taking into account that
the convergence is weak and the entropy functional is concave, one has



Step 2. Fixed t > t 0 , 4 t ( x , v ) = (X(x,v,t),V(x,v,t)), is, with its
inverse < t > - 1 , Holder continuous of exponent a, for any

Once X(x, v, t) has been obtained, V(x, v, t) is given by the second of (A.1).
In particular, it holds that

which implies

In fact,

is contractive in the norm

where the linear operator P[X~\ defined as

In fact we can represent the solution as

Solutions of Vlasov-Poisson Equation on a Circle 313
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In fact, since z = (x, v), z' = (x', v'), and T> t,

Let

and let us notice that, as LF>0,

By Eq. (A.3) and by the Lipschitz nature of F,

By the Gronwall Lemma,

From Eqs. (A.1) it follows that

and that

Summing (A.6) and (A.7), we get



Step 4. The spatial density p(x, t) is bounded in the L^ norm:
more precisely, as t> t 0 ,

In particular

where we have used the fact that <t>t is bijective and that both |X(x , v, t) —
x + vt\ and | V(x, v, t) — v| vanish as t -» oo.

Finally, since the vectorial field ( V , F ( X , t ) ) is divergence-free, then
(see, for example, ref. 1), 0, is an area preserving map. Therefore, given a
bounded function <p(x, v), we have

is a weak solution of (2.5). Moreover, (2.6) is satisfied. In fact, as t-* oo,

which proves Step 2. The Holder continuity of the inverse may be obtained
analogously.

Step 3. By Step 2

where C is a constant depending on t, T, a, and LF. Choosing
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In fact, for all xeS1, e>0, let us define

where B e cS 1 is the ball of radius £ centered in x. Let (y', v') = <& t(y , v),
and thereforef(y, v, t ) = f * ( y ' , v'). By the fact thatf*(y', v ' ) < a 2 / ( 1 + v'4)
and |v-v'|<(||f||a,t0/a)e-at [see (A.2)], it holds that

Then

Dividing by 2e and taking the limit for e-> 0, we get (A. 11).

Step 5. F ( F ) ( x , t) is a Lipschitz function of x for any t > t 0 , i.e.,

In fact

where we used (A.11), f p < 4 a 2 , and (2.3)-(2.4).
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Step 6. Let us indicate with Xi(x, v, t), V i (x , v, t), i=1,2,,, the
solutions of

By the first of (A.14)

By (A.15)

By Eq. (A.15) and by the Lipschitz nature of F1 F2 it holds that

Bootstrapping (A.17) starting from (A.16), we find



where we used (A.18).
Summing I1, I2, we get (3.7).

Moreover,

where we have used (A.18) and
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Step 7. Let us bound f ( F 1 ) - ^ ( F 2 ) . By (A.10), writing |X1(x , v, t)
— X2(x, v, t)| as £ for sake of simplicity, one has

where we have used (2.3) to estimate the first integral and (2.4) to estimate
the second one.

Let I1, I2 be the first and the second integrals in the last of (A.19)
respectively. It holds that
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Step 8. Finally, let us prove (3.8). With F = 0, we havef(x, v , t ) =
f*(x — vt, v). Therefore

and

where &(0)(k , t) is the Fourier transform of & ( 0 ) ( x , t) with respect to x,
and

is the Fourier transform of f*(x, v) with respect to x and v. Therefore

that is,

Finally, noticing that | |&(F)||a . t 0< ||^(0)||a,to+ | | & ( F ) -^(0)||a,to, and
by Step 7, we get (3.5).

Proof of Theorem 3.4.

Let us consider the solution ( < P 1 , E , f ) of (2.7)-(2.9) constructed in
Theorem 3.2. In particular, let

Step 1. For any be(0, a) there exists a positive constant c, such
that, for any (x, v)e(2, for any t > t0
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In fact

Therefore, since \E(x, t)\ <8a1a2e
-at (see Theorem 3.2),

and therefore (A.20) holds.

Step 2. For any b e (0, a) there exists a positive constant c2 such
that, as t > t0,

In fact,

The first integral in the last of (A.22), call it I 1 ( X ) , may be bounded
in the following way:
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where I2 is the Fourier transform of I2(X, t) with respect to X, and f*(a, b)
is the Fourier transform of f*(x, v) with respect to x and v. Therefore,

By (A.23) and (A.24), we get (A.21).

Step 3. By (A.21) and dxE = p(x, t)-p0 we get

Now the proof follows by standard methods. In fact, by (A.25), it follows
easily that 0 t, and its inverse ( > t ) - 1 are Lipschitz and therefore that f and
p are Lipschitz. From this we get that dxE is Lipschitz, and this, in par-
ticular, implies that E is C1, and by (A.25), that |d x E(x , t ) | < c 2 e - b t . This
implies that <Pt, and its inverse ( 0 t ) - l are C1. Finally, since f* is C1,
f = f * o ( ( p t ) - 1 is C1 and the * solution is classical.

Remark. When this work was complete, the referee pointed out in
his report that two recent papers(29,30) were concerned with the same
problem considered here. In the first one, the author claims the electric field
decays algebraically, such as \jt and not exponentially as t->oc. He
conjectures this fact by considering the function U(a,b) which is the
asymptotic velocity of a particle which at time 0 is in (a, b). He notices in
particular that a generic observable at time t may be computed evaluating
integrals like J dadbf0(a,b) e iu(a,b) t a part for terms which do not oscillate.
Then he notices that if the gradient of U vanishes in some point then, by
stationary phase arguments, the integral above should vanish as t -» oo in
an algebraic way. Finally he gives an argument for which the gradient of
U should vanish in many points.

The error in this argument is due to the fact that the gradient of U
cannot vanish. In fact, in this paper, we have constructed the transforma-

where we have used (3.15). By the fact that \v — V\ is bounded by const . e-at°,
we get (A.21). The second integral in the last of (A.22), call it I2(X), may
be explicitly evaluated using the Fourier transform:



tion X(a, b), U(a,b) which links the initial datum (a, b) to its asymptotic
behaviour X+Ut,U. This transformation is canonical, therefore its
Jacobian is 1, and therefore it cannot happen that daU = dbU = 0.

For what concerns the result in [30], the author shows, numerically,
that the electric field, after some initial damping, definitively oscillates
around some constant value. We agree with the conjecture that VPE's
solutions can converge to a steady solution which in general is not
homogeneous. We note that this is not in contrast with out result as in this
paper we construct particular initial conditions for which the electric field
asymptotically decays.
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